ОБ ОДНОЙ ИЗ ВАЖНЕЙШИХ ТЕОРЕМ ШКОЛЬНОЙ ГЕОМЕТРИИ

В. А. Смирнов, И. М. Смирнова

Московский педагогический государственный университет (МПГУ)

e-mail: <u>v-a-smirnov@mail.ru</u> i-m-smirnova@yandex.ru

Аннотация: в работе рассматривается теорема о внешнем угле треугольника, на которую опирается доказательство многих теорем школьной геометрии, среди которых теоремы о соотношении углов и сторон треугольника, неравенство треугольника, признаки параллельности двух прямых, сумма углов треугольника и др.

Ключевые слова: школьная геометрия, теорема о внешнем угле треугольника.

ABOUT ONE OF THE MOST IMPORTANT THEOREMS OF SCHOOL GEOMETRY

V. A. Smirnov, I. M. Smirnova

Moscow State Pedagogical University (MSPU)

e-mail: <u>v-a-smirnov@mail.ru</u>, i-m-smirnova@yandex.ru

Astract: the paper considers the theorem of the external angle of a triangle, on which the proof of many theorems of school geometry is based, including the theorems on the relationship between the angles and sides of a triangle, the inequality of a triangle, the signs of parallelism of two lines, the sum of angles of a triangle and others.

Keywords: school geometry, the theorem of the external angle of a triangle.

Геометрию Евклида можно подразделить на две части. Одна часть включает в себя понятия, свойства и теоремы, определение и доказательство которых не использует аксиому параллельных. Она называется абсолютной геометрией. Этот термин был введён венгерским математиком Я. Бойяи в 30-х годах XIX века. Другую часть геометрии Евклида, использующую аксиому параллельных, для удобства будем называть относительной геометрией.

В школьных учебниках геометрии по-разному решается вопрос о соотношении абсолютной и относительной геометрий. Так в учебнике [1] абсолютная и относительная геометрии не разделяются. Многие свойства и теоремы абсолютной геометрии расположены после введения аксиомы параллельных, и их доказательства используют эту аксиому. Среди них: соотношения между сторонами и углами треугольника; неравенство треугольника; признаки равенства прямоугольных треугольников; признаки параллельности двух прямых и др.

В учебнике [2] сначала излагается абсолютная геометрия, рассматриваются понятия и доказываются свойства и теоремы, не использующие аксиому параллельных, и только после этого вводится аксиома параллельных.

Такое разделение школьного курса геометрии на абсолютную и относительную позволяет сформировать более чёткие представления о роли аксиомы параллельных, о том, какие понятия, свойства и теоремы зависят от неё, а какие нет, закладывает основу дальнейшего знакомства с геометрией Лобачевского, сферической геометрией и др.

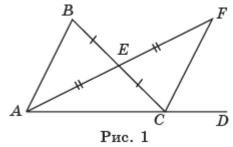
Здесь мы рассмотрим одну из важнейших теорем абсолютной геометрии, на которую опирается доказательство многих других теорем школьной геометрии.

Теорема. Внешний угол треугольника больше каждого внутреннего угла, не смежного с ним.

В учебнике [1] эта теорема является следствием теоремы о сумме углов треугольника и, значит, использует аксиому параллельных.

В учебнике [2] эта теорема рассматривается после признаков равенства треугольников до введения аксиомы параллельных. Приведём её доказательство, не использующее аксиому параллельных.

Доказательство. Пусть ABC – произвольный треугольник. Докажем, например, что внешний угол при вершине C этого треугольника больше внутреннего угла при вершине B (рис. 1).

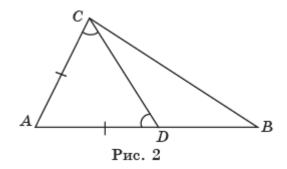


Через вершину A и середину E стороны BC данного треугольника проведём прямую и отложим на ней отрезок EF, равный AE. Треугольники ABE и FCE равны по первому признаку равенства треугольников (BE = CE, AE = FE, $\angle AEB = \angle FEC$). Следовательно, $\angle ABC = \angle BCF$. Угол BCF составляет часть внешнего угла BCD. Значит, имеет место неравенство $\angle BCD > \angle ABC$.

Эта теорема используется для доказательства следующих важных теорем абсолютной геометрии.

Теорема. (Соотношение между сторонами и углами треугольника.) В треугольнике против большей стороны лежит больший угол.

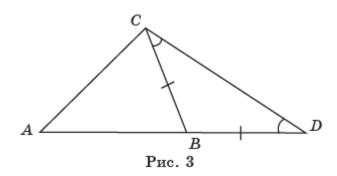
Доказательство. Рассмотрим треугольник ABC, в котором сторона AB больше стороны AC. Докажем, что угол C больше угла B. На луче AB отложим отрезок AD, равный стороне AC (рис. 2).



Треугольник ACD — равнобедренный (AC = AD). Следовательно, угол ACD равен углу ADC. Угол ACD составляет часть угла ACB, следовательно, $\angle ACD < \angle ACB$. С другой стороны, угол ADC является внешним углом треугольника BCD. Следовательно, $\angle ADC > \angle ABC$. В треугольнике ABC имеем $\angle C > \angle ACD = \angle ADC > \angle B$. Значит, $\angle C > \angle B$.

Теорема. (Неравенство треугольника.) В произвольном треугольнике каждая его сторона меньше суммы двух других сторон.

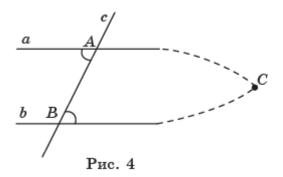
Доказательство. Пусть ABC — произвольный треугольник. Докажем, что сторона AC меньше суммы сторон AB и BC. На продолжении стороны AB отложим отрезок BD, равный стороне BC треугольника ABC (рис. 3).



Треугольник BDC — равнобедренный (BD = BC). Следовательно, $\angle BDC = \angle BCD$. Так как угол BCD составляет часть угла ACD, то $\angle BCD < \angle ACD$, следовательно, $\angle ADC < \angle ACD$. Так как против большего угла треугольника лежит большая сторона, то имеет место неравенство AC < AD. Так как сторона AD треугольника ADC равна сумме сторон AB и BC треугольника ABC, то имеет место неравенство AC < AB + BC, которое означает, что сторона AC треугольника меньше суммы двух других сторон.

Теорема. (Признак параллельности двух прямых.) Если при пересечении двух прямых третьей прямой, внутренние накрест лежащие углы равны, то эти две прямые параллельны.

Доказательство. Рассмотрим прямые a, b и прямую c, которая пересекает данные прямые соответственно в точках A, B и образует с этими прямыми равные накрест лежащие углы. Докажем, что прямые a и b параллельны. Если бы они пересекались в некоторой точке C (рис. 4), то внешний угол при вершине A треугольника ABC был бы равен внутреннему углу B этого треугольника.

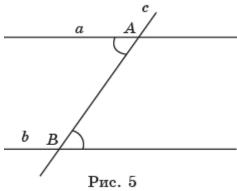


Это противоречит теореме о внешнем угле треугольника. Следовательно, прямые a и b не могут пересекаться, т. е. они параллельны.

После введения аксиомы параллельных последняя теорема используется для доказательства следующих теорем.

Теорема. Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны.

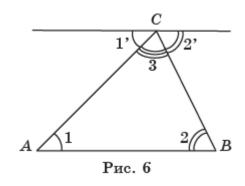
Доказательство. Рассмотрим параллельные прямые a, b и прямую c, которая пересекает эти прямые соответственно в точках в точках A и B (рис. 5).



Через точку A проведём прямую d, для которой внутренние накрест лежащие углы, образованные прямыми b, d и секущей c, равны. Прямые b и d параллельны по признаку параллельности двух прямых. Так как через точку A проходит единственная прямая, параллельная b, то прямая d должна совпадать с прямой a. Следовательно, внутренние накрест лежащие углы, образованные прямыми a, b и секущей c, равны.

Теорема. Сумма углов треугольника равна 180°.

Доказательство. Пусть ABC — произвольный треугольник. Через его вершину C проведём прямую, параллельную AB (рис. 6).



Обозначим углы треугольника ABC цифрами 1, 2, 3, а углы между проведённой прямой и двумя сторонами треугольника 1', 2'.

Углы 1 и 1', 2 и 2' равны как внутренние накрест лежащие углы. Следовательно, сумма углов треугольника ABC равна сумме углов 1', 3 и 2', т. е. равна 180° .

Теорема о равенстве внутренних накрест лежащих углов при двух параллельных прямых в дальнейшем используется для доказательства свойств и признаков параллелограмма и других теорем школьной геометрии.

Отметим, что доказательство признака параллельности двух прямых в учебнике [1] использует утверждение о том, что две прямые, перпендикулярные третьей прямой, параллельны, обоснование которого проводится перегибанием рисунка. Следовательно, оно не является математическим доказательством.

В дальнейшем эта теорема в учебнике [1] используется для доказательства теорем о сумме углов треугольника, соотношении между сторонами и углами треугольника, неравенстве треугольника, свойств и признаков параллелограмма и др.

Таким образом, все эти теоремы остаются без строгих математических доказательств.

Использование теоремы о внешнем угле треугольника [2] позволяет избежать перегибание рисунка, делает доказательства перечисленных свойств и теорем строгими математическими и, вместе с тем, доступными для учащихся, что чрезвычайно важно для развития логического мышления учащихся.

Литература

- 1. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Математика. Геометрия: 7-9-е классы: базовый уровень. М.: Просвещение, 2024.
- 2. Киселёв А. П. Геометрия / под ред. Н. А. Глаголева. М.: ФИЗМАТЛИТ, 2004.